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1. Introduction

After the role of holomorphicity in 2d conformal theories was fully realized and exploited

in [1] it was natural to look for the holomorphic factorization in the conformal-invariant

first-quantized theories of critical strings [2]. The problem here was that the relevant

quantities had to be meromorphic not only in z-variables, which define positions of oper-

ators in operator-product expansions, but also in the moduli of Riemann surfaces. The

relevant holomorphic anomalies in Polyakov’s combination of determinants, which define

string measures for bosonic, super- and heterotic strings, were evaluated in [3] and shown to

vanish together with conformal anomaly of [2]. This Belavin-Knizhnik theorem became a

starting point for construction of perturbative string and conformal field theories, reviewed,
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for example, in [4]–[8]. Without Belavin-Knizhnik theorem the Polyakov string measures

could be discussed in terms of either Shottky parametrization [9] or Selberg traces [10].

With this theorem the adequate language became that of the Mumford measure dµ on the

moduli space of complex curves (= Riemann surfaces) [11, 12]: the measure for bosonic

string was proved in [3] to be |dµ|2

det(Im T )13 , while that for the NSR superstring [13] had to

contain an extra factor of (det (Im T ))8 with dµ presumably multiplied by some modular

form of the weight 8. The first big success on this way was explicit construction of dµ for

the genera 2, 3 and 4 in terms of period matrices in [14 – 16] — and this was the starting

point of the long road towards DHP construction of NSR measures in [17]–[37].

From the very beginning there were two related but different strategies.

The first approach was to begin with Polyakov’s measure for NSR string at given char-

acteristic e, expressed through determinants in [2] and holomorphically factorized in [3],

integrate away the ”supermoduli” and obtain the relevant modification dµ[e] of the Mum-

ford measure. This road looked straightforward [38]–[52], until it was shown in [53 – 55]

that naive integration over supermoduli does not work and its proper version requires a lot

of work. This work was finally done by Eric D’Hoker and Duong Phong (DHP) in a series

of impressive papers [17]–[25], but only 15 year later and only for genus 2 so far.

The second equally obvious approach was to make educated guesses for NSR super-

string measure, i.e. to find the relevant weight-8 modular forms from their expected proper-

ties, at least for the first low genera, like it was done in [14 – 16] for dµ itself. As explained

in [41], the main obstacle on this way was modular non-invariance of the Riemann identities

– which are necessarily used for cancelation of tachionic divergencies after GSO projection

(=sum over characteristics) [56]. After a series of attempts [57] — now known to be partly

misleading — this approach was temporarily abandoned. Now, after the DHP triumph it

is used again and already led to explicit construction of NSR measures at genera 3 [34],

4 [36] and – somewhat less explicitly — for all higher genera [35]. The problem for g > 4 is

that the Mumford measure dµ does not possess any nice representation in terms modular

forms (only a far more transcendental formulas of [6, 53, 8] are currently available), but the

result of [35] supports the original suggestion of [3, 15] that the ratio Ξ8[e] = dµ[e]/dµ is a

modular form (then it has modular weight 8) and this Ξ8[e] is proposed in [35] in a simple

and clear form. The only remaining problem with these suggestions at g ≥ 3 is related to

1, 2, 3, 4-functions, and this makes the story of NSR measures not fully completed. Still, we

already know quite a lot, and the time probably came to analyze and explain the failures

of the early attempts and understand what are the answers to the questions, posed but

unanswered in late 1980’s. This paper is an attempt of such analysis.

2. Riemann surfaces and theta constants [58]–[63]

2.1 Theta-functions, theta-constants and modular forms on the Siegel semi-

space

2.1.1 Theta functions

Theta-functions are special functions, associated with abelian varieties: g-dimensional tori,
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g Ne N∗

1 3 1

2 10 6

3 36 28

4 136 120

. . .

Table 1: The number of even (Ne) and odd (N∗) θ-characteristics for low genera g.

which are factors of Cg over relations zi ∼ zi + Tijzj, where symmetric period matrices

Tij with positive definite imaginary part (Im T ) are points in the g(g + 1)/2 Siegel semi-

space, defined modulo integer symplectic (also called modular) transformations T ∼ (AT +

B)/(CT + D) from the group Sp(g, Z).

Bosonic and super-string measures on the moduli space of Riemann surfaces are defined

in terms of theta-functions with semi-integer characteristics, this is taken into account in

the following definition:

θ

[
~δ

~ε

]
(
~z|T
)

=
∑

~n∈Zg

exp

{
iπ

(
~n +

1

2
~δ

)
T

(
~n +

1

2
~δ

)
+ 2πi

(
~n +

1

2
~δ

)(
~z +

1

2
~ε

)}
(2.1)

Sums are over all g vectors ~n with integer coordinates, each coordinate of characteristic

vectors ~δ and ~ε can take values 0 or 1. Characteristic is called even or odd if scalar product
~δ~ε is even or odd respectively and associated theta-function is even or odd in ~z. The

value of theta-function at ~z = 0 is called theta-constant, it automatically vanishes for odd

characteristic. We often denote characteristics by e = {~δ, ~ε}, in most cases these will be

even characteristics, when we refer to some odd characteristic it is labeled by ∗. There are

Ne = 2g−1(2g +1) even and N∗ = 2g−1(2g −1) odd semi-integer characteristics, see table 1.

With a pair of characteristics (not obligatory even) we associate a sign factor

〈e1, e2〉 = exp
{

iπ
(
~δ1~ε2 − ~ε1

~δ2

)}
=
(
~δ1~ε2 − ~ε1

~δ2

)
mod 2 = 〈e2, e1〉 (2.2)

which takes values ±1. In particular, 〈e, e〉 = 1.

2.1.2 Modular forms

Functions of T , transforming multiplicatively under modular transformations, f(T ) →
(det(CT + D))−k f(T ), are called modular forms of weight k. Theta-constants are not

modular forms, they are not simply multiplied by (det(CT + D))−1/2, but also acquire

additional numerical factors proportional to eiπ/4 and change characteristics.

The simplest modular forms can be made from the 8-th powers of θ-constants, since

modular transformations act on them just by permuting their characteristics. In particular,

for any integer k and g

ξ4k ≡
Ne∑

e

θ8k
e (2.3)
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is a modular form of weight 4k. Important for NSR measures are

ξ4 =
Ne∑

e

θ8
e and ξ8 =

Ne∑

e

θ16
e (2.4)

Also

Π ≡
Ne∏

e

θe (2.5)

of weight Ne/2 is a modular form for g ≥ 3, while roots of unity arise and Π should be

raised to power 8 and 2 at g = 1 and g = 2 respectively. This Π is the building block of

Mumford measure at g = 1, 2, 3, see section 3 below.

However, the set of modular forms is by no means exhausted by these trivial characters

of the permutation group. Most important are other examples, having the same form for

all g, like

ξ2+4k,2+4l ≡
Ne∑

e,e′

〈e, e′〉θ4+8k
e θ4+8l

e′ =

Ne∑

e

θ4+8k
e ξ2+4l[e] (2.6)

which has weight 4(k + l + 1). Modular invariance of ξ2+4k,2+4l implies that

ξ2+4l[e] ≡
Ne∑

e′

〈e, e′〉θ4+8l
e′ (2.7)

transforms under modular transformations exactly like ξ4
e (we call such forms ”semi-

modular”). The sign factors 〈e, e′〉 serve to restore modular invariance whenever θ4
e′ appear

instead of θ8
e′ .

As discovered in [17]–[25],[33, 34, 36] and formulated in a very clear and general form

in [35], superstring measures are actually constructed from a wider family of modular forms

of weight 8, of which ξ8, and ξ2
4 and ξ2,6 are just the first three members:

ξ
(p)
8 =

Ne∑

e

ξ
(p)
8 [e] (2.8)

where

ξ
(0)
8 [e] = θ16

e , i.e. ξ
(0)
8 = ξ8,

ξ
(1)
8 [e] = θ8

e

Ne∑

e1

θ8
e+e1

= θ8
eξ4, i.e. ξ

(1)
8 = ξ2

4 ,

ξ
(2)
8 [e] = θ4

e

Ne∑

e1,e2

θ4
e+e1

θ4
e+e2

θ4
e+e1+e2

,

ξ
(3)
8 [e] = θ2

e

Ne∑

e1,e2,e3

θ2
e+e1

θ2
e+e2

θ2
e+e3

θ2
e+e1+e2

θ2
e+e1+e3

θ2
e+e2+e3

θ2
e+e1+e2+e3

,

. . . (2.9)
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and in general

ξ
(p)
8 [e]=

Ne∑

e1,...,ep



θe ·

(
p∏

i

θe+ei

)
·




p∏

i<j

θe+ei+ej


·




p∏

i<j<k

θe+ei+ej+ek


· . . . · θe+e1+···+ep





4/2p

(2.10)

Characteristics are added as vectors. Sign factors 〈e, e′〉 are not seen in these formulas,

because, say, in ξ
(2)
8

〈e, e + e1〉〈e, e + e2〉〈e, e + e1 + e2〉 = 〈e, e1〉2〈e, e2〉2 = 1,

while in ξ
(3)
8

√
〈e, e + e1〉

√
〈e, e + e2〉

√
〈e, e + e3〉

√
〈e, e + e1 + e2〉

√
〈e, e + e1 + e3〉

√
〈e, e + e2 + e3〉 ·

·
√

〈e, e + e1 + e2 + e3〉 =
√

〈e, e1〉4〈e, e2〉4〈e, e3〉4 = 〈e, e1〉2〈e, e2〉2〈e, e3〉2 = 1

and so on. Many terms in the sums (2.9) and (2.10) are actually vanishing, because

contributing characteristics are odd, for careful analysis of this phenomenon in terms of

isotropic spaces and Lagrange varieties see [34]. Only ξ
(p)
8 with p ≤ g appear in NSR

measures in section 4.2 below. For g ≥ 5 fractional powers of theta-constants begin to

appear in the relevant ξ
(p)
8 , see [37] for an (optimistic) analysis of the g = 5 case.

2.1.3 Grushevsky’s basis

In [35] a slightly different basis was actually used, with all diagonal terms eliminated from

the sums (2.9) and (2.10):

ξ
(0)
8 [e] = G

(0)
8 [e],

ξ
(1)
8 [e] = G

(0)
8 [e] + G

(1)
8 [e],

ξ
(2)
8 [e] = G

(0)
8 [e] + 3G

(1)
8 [e] + G

(2)
8 [e],

ξ
(3)
8 [e] = G

(0)
8 [e] + 7G

(1)
8 [e] + 7G

(2)
8 [e] + G

(3)
8 [e],

ξ
(4)
8 [e] = G

(0)
8 [e] + 15G

(1)
8 [e] + 35G

(2)
8 [e] + 15G

(3)
8 [e] + G

(4)
8 [e],

ξ
(5)
8 [e] = G

(0)
8 [e] + 31G

(1)
8 [e] + 155G

(2)
8 [e] + 155G

(3)
8 [e] + 31G

(4)
8 [e] + G

(5)
8 [e],

ξ
(6)
8 [e] = G

(0)
8 [e] + 63G

(1)
8 [e] + 651G

(2)
8 [e] + 1395G

(3)
8 [e] + 651G

(4)
8 [e] + 63G

(5)
8 [e] + G

(6)
8 [e],

. . . (2.11)

and in general

ξ
(p)
8 [e] = G

(p)
8 [e] + (2p − 1)G

(p−1)
8 [e] +

(2p − 1)(2p−1 − 1)

3
G

(p−2)
8 [e]

+
(2p − 1)(2p−1 − 1)(2p−2 − 1)

7 · 3 G
(p−3)
8 [e]

+
(2p − 1)(2p−1 − 1)(2p−2 − 1)(2p−3 − 1)

15 · 7 · 3 G
(p−4)
8 [e]

+
(2p − 1)(2p−1 − 1)(2p−2 − 1)(2p−3 − 1)(2p−4 − 1)

31 · 15 · 7 · 3 G
(p−5)
8 [e] + · · ·
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(note the reversed order of terms in the last formula). The definition of, say, G
(1)
8 is

G
(1)
8 [e] ≡ θ8

e

Ne∑

e1 6=0

θ8
e+e1

= θ8
e

(
Ne∑

e1

θ8
e+e1

− θ8
e

)
= ξ

(1)
8 [e] − ξ

(0)
8 [e] (2.12)

In other words, in the sum for ξ
(1)
8 [e] there is one term with e1 = 0, which is G

(0)
8 , and all the

rest is G
(1)
8 . Similarly, in the double sum for ξ

(2)
8 there is a contribution from e1 = e2 = 0

— this is G
(0)
8 ,– there are contributions from either e1 = 0 and e2 6= 0 or e2 = 0 and e1 6= 0

or e1 + e2 = 0 and e1 = e2 6= 0 – these are 3 ·G(1)
8 ,– and the rest is G

(2)
8 . When we proceed

to triple sums, it is important to remember that e1 = e2 = 0 automatically implies that

e1 + e2 = 0: this will produce factors like 2p − 4 = 4(2p−2 − 1) instead of 2p − 3 when we

select the third characteristic to nullify after the two are already chosen.

There is no a priori reason to prefer G
(p)
8 over ξ

(p)
8 , but in [35] it was demonstrated

that NSR measures are actually ”more universal” (coefficients do not depend on g) when

expressed in terms of G
(p)
8 , see section 4.2 below.

2.1.4 Riemann identities

There are no non-vanishing modular forms of weight 2 made from the 4-th powers of

theta-constants, instead there is a set of Riemann identities

R∗ ≡
Ne∑

e

〈e, ∗〉θ4
e = 0 (2.13)

for all of the N∗ odd characteristics ∗. Of N∗ = 2g−1(2g − 1) Riemann identities there

are 1
3(4g − 1) = 1

3 (2g + 1)(2g − 1) linearly independent, and they reduce the number of

linearly-independent θ4[e] from Ne = 2g−1(2g + 1) to 1
3(2g − 1)(2g + 1). Other relations

between theta-constants involve powers of θ4. In naive superstring considerations an even

stronger version of Riemann identity is commonly used, where up to three of the four

theta-constants are promoted to theta-functions:

R∗(~z1, ~z2, ~z3|T ) ≡
Ne∑

e

〈e, ∗〉θe(~0)θe(~z12)θe(~z23)θe(~z31) = 0 (2.14)

for any three vectors ~z1, ~z2, ~z3. Both (2.13) and (2.14) are corollaries of a general relation
∑

all e

〈e, ∗〉θe(~z1)θe(~z2)θe(~z3)θe(~z4) (2.15)

= 2gθ∗

(
~z1+~z2+~z3+~z4

2

)
θ∗

(
~z1+~z2−~z3−~z4

2

)
θ∗

(
~z1−~z2+~z3−~z4

2

)
θ∗

(
~z1−~z2−~z3+~z4

2

)

If one needs a sum over even characteristics at the l.h.s. it is enough to add the same

formula with ~z4 → −~z4 to the r.h.s. (and divide by two). In particular,

∑

e

〈e, ∗〉θe(~0)3θe(~z) = 2gθ4
∗

(
~z

2

)
, (2.16)

plays important role in superstring calculus.
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2.1.5 Decomposition rules

For block-diagonal matrices T =

(
T1 0

0 T2

)
with g = g1 + g2 the theta-functions factorize

into products θe(~z|T ) = θe1
(~z1|T1)θe2

(~z2|T2). Above-mentioned modular forms behave as

multiplicative characters under this decomposition: they also factorize,

ξ4k(T ) = ξ4k(T1)ξ4k(T2), ξ2+4k,2+4l(T ) = ξ2+4k,2+4l(T1)ξ2+4k,2+4l(T2),

ξ
(p)
8 [e](T ) = ξ

(p)
8 [e1](T1)ξ

(p)
8 [e2](T2), R∗(T ) = R∗1

(T1)R∗2
(T2), (2.17)

while Π in (2.5) vanishes, because some even characteristics e get decomposed into two

odd, for example

[
1 1

1 1

]
→
[

1

1

]
⊗
[

1

1

]
.

2.2 Moduli space and Riemannian θ-functions [58]–[63]

Riemannian theta-functions are associated with tori which are Jacobians of Riemann sur-

faces (complex curves). Then g is the genus of the curve and Tij is its period matrix. Period

matrices define an embedding of moduli space of Riemann surfaces into Siegel semi-space,

and moduli space has non-vanishing codimension g(g + 1)/2− (3g − 3) for g ≥ 4. In terms

of T matrices this embedding is defined by a set of transcendental Shottky relations. Today

the best known formulation of these relations is that the corresponding theta-function is

a τ -function of KP-hierarchy [64, 65] or, in other words, satisfy Wick theorem [8, 66, 67],

also known as a set of Fay’s identities [59]:

det
i,j

θe(~xi − ~yj)

E(xi, yj)θe(~0)
=

θe(
∑

i ~xi −
∑

i ~yi)

θe(~0)

∏
i<j E(xi, xj)E(yi, yj)∏

i,j E(xi, yj)
(2.18)

Here E(x, y) = θ∗(~x−~y)
ν∗(x)ν∗(y) is the prime form, ~x − ~y =

∫ x
y ~ω and ν2(x) = θ∗,i(~0)ωi(x).

Alternatively, one of the Shottky relations (the only one in the case of g = 4) can be

formulated as the condition

χ8 ≡ 2gξ8 − ξ2
4 = 2g

∑

e

θ16
e −

(
∑

e

θ8
e

)2

= 0 (2.19)

This is currently a hypothesis [3, 14, 15, 19], rigorously proved only for g = 4 [63] (for g ≤ 3

this is not a Shottky relation, but a simple algebraic relation in hyperelliptic parametriza-

tion, see below). At the same time it expresses the equivalence (duality) of string com-

pactifications on 16-dimensional tori with the two even self-dual lattices Γ16 and Γ8 × Γ8

and thus of the heterotic SO(32) and E8 × E8 strings [68] and is strongly believed to be

true ”on physical grounds”.

2.3 Hyperelliptic surfaces [58, 59, 69]

Hyperelliptic surfaces are ramified double coverings of Riemann sphere, which can be de-

scribed as

y2 =

2g+2∏

i=1

(x − ai) (2.20)

– 7 –
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Hyperelliptic surfaces form a (2g − 1)-dimensional subspace in the moduli

space, parameterized by ramification points ai modulo rational transformations

(x, y|ai) →
(

Ax+B
Cx+D , y

(Cx+D)g+1

∣∣∣Aai+B
Cai+D

)
. At genera 1 and 2 all Riemann surfaces are hyper-

elliptic. At genus 3 hyperelliptic locus has codimension 1 and is defined by Π =
∏

e θe = 0.

Consideration of hyperelliptic locus is very instructive, because characteristic-

dependence of theta-constants on it becomes pure algebraic. Semi-integer theta-

characteristics are associated with splitting of all 2g + 2 ramification points into two sets

of g + 1 − 2k and g + 1 + 2k points: {a} = {ã}⋃
{
˜̃a
}
. Characteristic is even/odd if k is

even/odd, it is also called singular if k > 2. Non-vanishing are only theta-constants associ-

ated with even non-singular characteristic, k = 0, and these non-vanishing theta-constants

are expressed through ramification points by Thomae formulas:

θ4[e] = ±(det σ)2
g+1∏

i<j

(ãi − ãj)
(
˜̃ai − ˜̃aj

)
= ±(detσ)2

g+1∏

i<j

ãij
˜̃aij (2.21)

Proportionality coefficient is transcendental, with σij =
∮
Ai

xj−1dx
y(x) , see [58, 59, 69] for

details. Fortunately, we do not need it in the present text.

In more detail Thomae formulas depend on the choice of some set U of g+1 ramification

points. Characteristics are in one-to-one correspondence with the sets S, consisting of

even numbers of ramification points. Given U and S one can define a new set S ◦ U =

S ∪ U − S ∩ U and characteristic is non-singular if #(S ◦ U) = g + 1 and in this case

θ4
e ∼ (−)#(S∪U)

∏

ãi∈S◦U

ẽaj /∈S◦U

(
ãi − ˜̃aj

)−1
(2.22)

The sign factor for any pair of characteristics (even or odd) is

〈e1, e2〉 = (−)#(S1∪S2) (2.23)

The number of non-singular even characteristics is Nnse = Cg+1
2g+2, so that Nnse = Ne for

g = 1, 2, while Nnse = Ne − 1 for g = 3 — so that exactly one even theta-constant vanishes

and thus Π = 0 at codimension-one hyperelliptic locus in the moduli space at g = 3. The

deviation from the hyperelliptic locus is measured by
√

Π which has modular weight 9, and

therefore the relations between modular forms of lower weights (including those of weight 8,

which are relevant for NSR measures) can be exhaustively studied in hyperelliptic terms, i.e.

pure algebraically. To be more precise, if two forms of weight ≤ 8 coincide at hyperelliptic

locus at genus 3, they coincide everywhere. At higher genera g > 3 the codimension of

hyperelliptic locus in the moduli space is higher: (3g − 3) − (2g − 1) = g − 2. Of course,

Π = 0 at all these loci, but additional g− 3 relations occur which should also be taken into

account, and also Shottky relations should be added if one seeks for a description in terms

of modular forms.

On hyperelliptic locus the modular transformations act by permutations of ramification

points, and modular forms are just symmetric polynomials of ai, multiplied by appropriate

power of det σ. This makes hyperelliptic parametrization extremely convenient for study

of relations between modular forms, at least for low genera and weights.

– 8 –
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τ → τ + 1 τ → −1/τ

θ4
00 = b + c = a b −a

θ4
01 = b a −c

θ4
10 = c −c −b

Table 2: Modular transformations of genus-one theta-constants.

2.4 Relations between modular forms at particular genera

2.4.1 Genus one

Three theta-constants are related by Riemann identity

θ4
00 = θ4

01 + θ4
10 ≡ b + c (2.24)

The space of modular forms at genus one is generated by two Eisenstein series:

E4 =

′∑

m,n

1

(m + nτ)4
∼ ξ4 =

3∑

e=1

θ8
e = (b + c)2 + b2 + c2 = 2

(
b2 + bc + c2

)
(2.25)

and

E6 =

′∑

m,n

1

(m+nτ)6
∼


θ

[
0

1

]4

−θ

[
1

0

]4



θ

[
0

0

]4

+θ

[
0

1

]4



θ

[
0

0

]4

+θ

[
1

0

]4



= (b − c)(2b + c)(b + 2c) (2.26)

They are related to Dedekind function η = eiπτ/12
∏∞

n=1

(
1 − e2πinτ

)
by

η24 = Π8 = (θ00θ01θ10)
8 = (bc(b + c))2 =

1

1728
(E3

4 − E2
6) (2.27)

For any of the three even theta-characteristic e we have:

2θ16
e − θ8

e

3∑

e′

θ8
e′ = 2〈e, ∗〉θ4

e

3∏

e′

θ4
e′ = 2〈e, ∗〉θ4

eη12 = 2θ4
eΠ

4
∗ (2.28)

i.e.

2(b + c)4 − (b + c)2 · 2(b2 + bc + c2) = 2(b + c) · bc(b + c)

2b4 − b2 · 2(b2 + bc + c2) = −2b · bc(b + c)

2c4 − c2 · 2(b2 + bc + c2) = −2c · bc(b + c)

Thus for g = 1 the two vanishing-relations (2.13) and (2.19) are actually the same. Note

that we absorbed the sign-factor 〈e, ∗〉 into the definition of Π4
∗.

Under modular transformations the theta-constants transform as shown in table 2. For
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p αp βp wp

0 1 0 1

1 0 1 2

2 -2 3 4

3 -6 7 8

4 -14 15 16

. . .

p −2(2p−1 − 1) 2p − 1 2p

Table 3: Coefficients of ξ
(p)
8 linear decompositions (2.30) in two different basises at g = 1.

g = 1 all our forms of weights 4 and 8 are expressed through θ8
e , and ξ4 =

∑
e θ8

e :

ξ2[e] ≡
3∑

e′

〈e, e′〉θ4
e′ = 2θ4

e ,

ξ2,2 ≡
3∑

e,e′

θ4
e〈e, e′〉θ4

e′ = 2

3∑

e

θ8
e = 2ξ4,

ξ6[e] =
3∑

e′

〈e, e′〉θ12
e′ = −θ12

e +
3

2
θ4
e

3∑

e′

θ8
e′

(2.28)
= θ4

e

3∑

e′

θ8
e′ − Π4

∗ = ξ4θ
4
e − Π4

∗,

ξ2,6 ≡
3∑

e,e′

θ4
e〈e, e′〉θ12

e′ = 2
3∑

e

θ16
e = 2ξ8

(2.19)
= ξ2

4 =

(
3∑

e

θ8
e

)2

(2.29)

For the set of the CDG-Grushevsky forms (2.9) and (2.10) we have:

ξ
(p )
8 [e] = αp θ16

e + βp θ8
e

3∑

e′

θ8
e′ = αp ξ

(0)
8 [e] + βp ξ

(1)
8 [e]

(2.28)
=

wp

2
θ8
eξ4 + αp θ4

eΠ
4
∗, (2.30)

where wp = αp + 2βp. It follows that

ξ
(p )
8 ≡

3∑

e

ξ
(p )
8 [e] =

wp

2
ξ2
4 = 2p−1ξ2

4 (2.31)

Numerical coefficients αp, βp and wp are easily evaluated, if theta-constants are expressed

through b and c, see table 3.

In particular, it follows that ξ
(2)
8 [e] = 2θ4

eξ6[e].

In hyperelliptic parametrization

θ4
00 = a12a34, θ4

01 = a13a24, θ4
10 = a41a23 (2.32)

and formulas look a little more involved than in terms of b and c, for example:

ξ4 =
∑

e

θ8
e = a2

12a
2
34 + a2

13a
2
24 + a2

14a
2
23 = −6s4 + 6s3s1 +

7

2
s2
2 − 4s2s

2
1 +

1

2
s4
1, (2.33)
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S S ∪ U S ∩ U S ◦ U θ4
e

∅ 34 ∅ 34 ∼ + 1
a31a32a41a42

∼ +a12a34

13 134 3 14 ∼ − 1
a12a13a42a43

∼ −a14a23

14 134 4 13 ∼ − 1
a12a14a32a34

∼ +a13a24

23 234 3 24 ∼ − 1
a21a23a41a43

∼ +a13a24

24 234 4 23 ∼ − 1
a21a24a31a34

∼ −a14a23

1234 1234 34 12 ∼ + 1
a13a14a23a24

∼ +a12a34

12 1234 ∅ 1234 0

34 34 34 ∅ 0

Table 4: Different ingredients of Thomae formula (2.22) at genus one.

where sm =
∑4

k=1 ak
i . Also,

ξ8 =
∑

e

θ16
e = a4

12a
4
34 + a4

13a
4
24 + a4

14a
4
23 = 2ξ2

4

R∗ =
∑

e

〈e, ∗〉θ4
e ∼ a12a34 − a13a24 − a41a23 = 0

ξ2,2 = a12a34(a12a34 + a13a24 + a41a23) + a13a24(a12a34 + a13a24 − a41a23)

+a41a23(a12a34 − a13a24 + a41a23)

and

ξ2,6 = a12a34

(
a3

12a
3
34 + a3

13a
3
24 + a3

41a
3
23

)
+ a13a24

(
a3

12a
3
34 + a3

13a
3
24 − a3

41a
3
23

)

+a41a23

(
a3

12a
3
34 − a3

13a
3
24 + a3

41a
3
23

)

Still, all the relations, including (2.30), can be easily derived in this parametrization, and

such derivations are straightforwardly generalized to g = 2, 3. The more economic b, c

parametrization is also generalizable (it is related to expressions through theta-constants

of doubled argument, θ(2T ), which was actually used in [34]), but this is a slightly more

involved technique, unnecessary for our presentation.

Formula (2.22) for g = 1 is represented by table 4. It is assumed here that U = {a3, a4}:
this is the choice which reproduces (2.32). In the last two lines #(S ◦U) 6= g + 1 = 2, such

sets S correspond to the odd characteristic with vanishing theta-constant.

2.4.2 Genus two

Of six (as many as there are odd characteristics *) Riemann identities (2.13) there are five

linearly independent, and they express 10 a priori different θ4
e through 5 linearly indepen-

dent ones. In addition there is one non-linear relation:

χ8 = 4ξ8 − ξ2
4 = 0, i.e. ξ

(0)
8 ≡ ξ8 =

1

4
ξ2
4 , ξ

(1)
8 = ξ2

4 (2.34)

Further,

ξ2,2 = 4ξ4,

ξ2,6 = 4ξ8 = ξ2
4 (2.35)
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p αp βp γp wp

0 1 0 0 1

1 0 1 0 4

2 0 0 1 16

3 8 −14 7 64

4 56 −90 35 256

. . .

p 8(2p−1−1)(2p−2−1)
3 −2(2p − 1)(2p−2 − 1) (2p−1)(2p−1−1)

3 4p

Table 5: Coefficients of ξ
(p)
8 linear decompositions (2.37) and (2.38) at g = 2.

S 14 16 46 23 25 35

2356 2345 1235 1456 1346 1246

e(S)

[
0 1

0 1

] [
1 0

1 1

] [
1 1

1 0

] [
0 1

1 1

] [
1 1

0 1

] [
1 0

1 0

]

θe 0 0 0 0 0 0

Table 6: Ingredients of of Thomae formula (2.22) at genus two for odd theta-characteristics.

and

ξ
(2)
8 [e] = 4θ4

eξ6[e], ξ
(2)
8 =

10∑

e

ξ
(2)
8 [e] = 4ξ2,6 = 4ξ2

4 (2.36)

ξ
(p )
8 [e] = αp θ16

e + βp θ8
e

3∑

e′

θ8
e′ + γp θ4

e

3∑

e′,e′′

θ4
e′θ

4
e′′θ

4
e+e′+e′′

= αp ξ
(0)
8 [e] + βp ξ

(1)
8 [e] + γp ξ

(2)
8 [e] (2.37)

It follows that

ξ
(p )
8 ≡

3∑

e

ξ
(p )
8 [e] =

(
1

4
αp + βp + 4γp

)
ξ2
4 =

1

4
wp ξ2

4 (2.38)

where wp = αp + 4βp + 16γp. Numerical coefficients αp, βp and γp are easily evaluated if

theta-constants are expressed in hyperelliptic parametrization, where they become simple

algebraic relations, see table 5. The simplest way to prove this kind of identities is to use

hyperelliptic parametrization, where they become simple algebraic relations. In the basis

selected in [33] — it corresponds to taking U = {a2, a3, a5} in (2.22)1 — we get expressions,

collected in tables 6 and 7.

1However, association of theta-characteristics — the map S → e(S) — in [33] does not look consistent

with the rule (2.23), and we choose another one in the second line of the table.
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S ∅ 24 13 56 26 45 15 36 34 12

123456 1356 2456 1234 1345 1236 2346 1245 1256 3456

e(S)

"

0 0

0 0

# "

0 0

0 1

# "

0 0

1 1

# "

0 0

1 0

# "

1 1

1 1

# "

1 1

0 0

# "

1 0

0 1

# "

1 0

0 0

# "

0 1

1 0

# "

0 1

0 0

#

θ
4
e −a146a235 a126a345 a125a346 −a145a236 a124a356 −a156a234 a123a456 −a134a256 −a136a245 −a135a246

Table 7: Ingredients of of Thomae formula (2.22) at genus two for even theta-characteristics.

Note that there is no direct counterpart of the relation (2.28) already for g = 2: the

form χ8 = 4ξ8 − ξ2
4 is not a linear combination of Riemann identities (2.13). Moreover,

one can easily check that it does not automatically vanish for arbitrary set of 5 linearly-

independent θ4
e : from genus two χ8 = 0 is an additional relation between theta-constants,

algebraically (not only linear) independent of Riemann identities.

2.4.3 Genus three

The number N∗ of Riemann identities is now 28, of which 4g−1
3 = 21 are linearly indepen-

dent and there are (2g+1)(2g−1+1)
3 = 36− 21 = 15 linearly independent θ4

e . Again, there are

additional non-linear relations, including

χ8 = 8ξ8 − ξ2
4 = 8

36∑

e

θ16
e −

(
36∑

e

θ8
e

)2

= 0 (2.39)

Hyperelliptic locus has codimension one in moduli space and is defined by Π =
∏36

e θe = 0.

Still, hyperelliptic parametrization can be used to prove formulas at genus 3 for modular

functions of weights ≤ 8, because deviations from hyperellipticity are proportional to
√

Π

which has weight 9.

2.4.4 Genus four

As shown in [63], and widely used since [3, 15, 17], χ8 = 0 exactly at the moduli space,

embedded as codimension-one subspace in the Siegel upper semi-space. Hyperelliptic locus

now has codimension g − 2 = 4, this is the place where Π = 0, but actually not just one,

but 10 out of 136 even theta-constants vanish on it. Simple hyperelliptic calculations are

still very useful here, but are not as conclusive as they are for g < 4.

3. Mumford measure for critical bosonic string [14, 15]

After a brief exposition of the theory of theta-constants – note that we do not need anything

more than above simple statements — we are ready to switch to the string measures.

As already mentioned in the Introduction, Belavin-Knizhnik theorem [3] expresses them

through the holomorphic Mumford measure on the moduli space of complex curves, which

has degree-2 poles at the boundaries: namely when one of the cycles (contractible or non-

contractible) gets shrinked. The degree of the pole is controlled by the negative mass
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squared of a tachyon, present in the spectrum of bosonic string. Residues at the poles are

given by two-point a function in the case of non-contractible cycle (when genus g curve

degenerates into the one of g − 1) and a product of two one-point functions in the case

of contractible cycle (when the curve splits into two of genera g1 and g2 = g − g1). In

fact the values of pole degrees are enough to determine the measure and above properties

can be used to read off expressions for one- and two-point functions. The most interesting

object is the string measure on the universal moduli space, unifying all genera and all the

correlators (scattering amplitudes) [70]. n-point correlators can also be promoted to stringy

correlators by inclusion of Riemann surfaces with boundaries and/or non-oriented [71].

In fact all these generalizations are rather straightforward once the structure of string

measures for particular genera is clarified2 – and we list here original expressions from [14,

15]. For somewhat less explicit expressions for all genera see [4]–[8].

Genus one.

1

(Im τ)14

∣∣∣∣∣∣∣

dτ
(∏3

e θ[e](τ)
)8

∣∣∣∣∣∣∣

2

i.e. dµ =
dτ

Π8
(3.1)

Genus two.

1
(
det (Im T )

)13

∣∣∣∣∣∣∣

dT11dT12dT22(∏10
e θ[e](τ)

)2

∣∣∣∣∣∣∣

2

i.e. dµ =

∏2
i<j dTij

Π2
(3.2)

Genus three.

1
(
det (Im T )

)13

∣∣∣∣∣∣∣

dT11dT12dT13dT22dT23dT33(∏36
e θ[e](τ)

)1/2

∣∣∣∣∣∣∣

2

i.e. dµ =

∏3
i<j dTij√

Π
(3.3)

Zero of the form in denominator is at the hyperelliptic locus. The square root singularity

at this locus is fictitious: the period matrix in the vicinity of the locus is a square of the

proper modulus [14, 15].

Genus four. This is the first time when the module space is smaller then Teichmuller

one, it has complex codimension one and is defined by the zero of a single Shottky condition

χ8 = 0 (3.4)

where χ8 is the weight-8 modular form on Teichmuller space,

χ8(T ) = 16
∑

e

θ[e]16 −
(
∑

e

θ[e]8

)2

(3.5)

2The only subject which remains really puzzling concerns arithmetic properties of Mumford measure [72,

73]. Especially interesting is the relation between Polyakov and Migdal formalisms for string measures: the

latter one is based on the use of equilateral triangulations, i.e. rational surfaces (Grothendieck’s dessins

d’enfant), which are not very well distributed inside the moduli space what makes equivalence of measures

a kind of surprise, see [73] for details.
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Bosonic string measure is

1
(
det (Im T )

)13

∣∣∣∣∣

∏4
ij≤j dTij

χ8(T )

∣∣∣∣∣

2

(3.6)

This wonderful formula, suggested in [3] and [15] never attracted attention that it deserves

and was not investigated as carefully as its lower-genera counterparts. Note that instead

of the holomorphic delta-function of χ8 in (3.6) one can put the sum of the NSR measures∑
e Ξ8[e], which vanishes on the moduli space and is essentially the same as χ8.

4. NSR measures

4.1 Superstring from NSR measures for fermionic string

Superstring possesses space-time supersymmetry in critical dimension d = 10. Two ap-

proaches are developed in order to describe it in the first quantization formalism, i.e. with

the help of the two-dimensional actions on string world sheet. One approach (Green-

Schwarz formalism [74]–[77]) is explicitly d = 10 supersymmetric, but the two-dimensional

action is highly non-linear and possesses sophisticated κ-symmetry. Another, NSR ap-

proach [13, 56] is based on the theory of fermionic string, defined as possessing the world-

sheet, i.e. 2d supersymmetry. On world sheets with non-trivial topologies one can impose

a variety of boundary conditions on 2d fermions, associated with different spin-structures

or, what is the same, the theta-characteristics. The corresponding holomorphic NSR mea-

sures dµ[e] on the moduli space of Riemann surfaces also depend on theta-characteristics.

Fermionic string does not have 10d space-time supersymmetry, it has tachyon and diver-

gencies, just as bosonic string. However, superstring Hilbert space is just a subspace in the

Hilbert space of fermionic space, and the relevant GSO projection [56] is provided simply

by a sum of any holomorphic conformal block over the spin-structures:

〈A〉 =

∫
1

(det (Im T ))5

∣∣∣∣∣
∑

e

A[e]dµ[e]

∣∣∣∣∣

2

(4.1)

where A[e] is a combination of holomorphic Green functions, associated with the multi-

point observable A.

In genus one the three NSR measures are well known [13]:

dµ[e] =
〈e, ∗〉θ4

edτ

η12
, (4.2)

what means that they are expressed through Mumford measure dµ = dτ
η24 = dτ

Π8 from (3.1):

dµe = 〈e, ∗〉θ4
eη12dµ = θ4

eΠ
4
∗dµ (4.3)

where ∗ is the only odd theta-characteristic at g = 1. (Of course, for genus one the measure

includes the 6-th power of Im τ instead of the 5-th one in for g > 1.)
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It is an old conjecture that the situation is similar for arbitrary genus:

dµ[e] = Ξ8[e]dµ, (4.4)

where Ξ8[e] is a semi-modular form of weight 8. This is a non-trivial hypothesis for g ≥ 4,

because there is no obvious reason why dµ[e]/dµ should have any nice continuation to

entire Siegel space, beyond the moduli space. Still, if this hypothesis is true, for any

correlator in superstring theory we have a simple representation in terms of an integral

over moduli space:

〈A〉 =

∫ |dµ|2
(det (Im T ))5

∣∣∣∣∣
∑

e

A[e] Ξ8[e]

∣∣∣∣∣

2

(4.5)

Under these assumptions the only unknown is the set of forms Ξ8[e], which should satisfy

two simple properties: factorization and the condition of vanishing cosmological constant,

∑

e

dµ[e] = 0, i.e.
∑

e

Ξ8[e] = 0 (4.6)

For genus 1 eq. (4.6) for (4.3) is an immediate corollary of the Riemann identity (2.13),

∑

e

〈e, ∗〉θ[e]4 = 0 (4.7)

It seemed a natural generalization of conjecture (4.4) to extend this property to all

genera [41, 42]:

Ξ8[e]
?
= 〈e, ∗〉θ4

eK
∗
6 , (4.8)

especially because (2.14) would then automatically guarantee the vanishing of all g ≥ 1

corrections to the 1, 2, 3-point functions. Immediate drawback of this Riemann-identity

hypothesis was explicit dependence on the odd characteristic ∗, which would un-acceptedly

show up in non-vanishing 4-point function and in higher correlators. Worse than that, an

appropriate form K∗
6 does not seem to exist.

It was believed that the NSR measure can be derived, starting from explicitly 2d-

supersymmetric formalism for fermionic string, based on the clever definition of super-

Riemann surfaces, by integrating over odd supermoduli. However, naive simplified ap-

proaches of this kind (attempting to trivialize the supermoduli bundle over the ordinary

module space) failed, and accurate integration was performed only recently in [17]–[20] and

only for g = 2. The outcome was a confirmation of hypothesis (4.4) and a clear denuncia-

tion of (4.8): it appeared that instead of continuing (4.7) from g = 1 to g > 1 one should

rather substitute it by

g = 1 : Ξ8[e] =
∑

e

〈e, ∗〉θ[e]4Π4
∗

(2.28)
= 2

∑

e

θ16
e −

(
∑

e

θ8
e

)2

= χ8
(2.9)
= 2ξ

(0)
8 − ξ

(1)
8 (4.9)
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and continue the r.h.s. (note that relation (2.28) does not survive at g ≥ 2, so that continu-

ations of its two sides deviate from each other). Such continuation was derived in [17]–[20]

for g = 2, reformulated and generalized to g = 3, 4 in [33, 34, 36] and was put in the nice

form, conjecturally reasonable for arbitrary g in [35]. Since CPG-Grushevsky conjecture

for g ≥ 3 expresses dµ[e] through ξ
(p)
8 with p ≥ 3, it does not contain an explicit θ4

e factor,

what makes puzzling the story about the 1, 2, 3-point functions.

4.2 Anzatz for the NSR measures [17, 34, 36]

The natural generalization of the r.h.s. of (4.9) is

any g : Ξ8[e] =

g∑

p=0

hp ξ
(p)
8 [e], (4.10)

where CDG-Grushevsky forms at the r.h.s. are defined in (2.9) and (2.10) and coefficients hp

are constrained by requirements of factorization and vanishing of the cosmological constant.

The latter one implies that

Ne∑

e

Ξ8[e] =

g∑

p=0

hp ξ
(p)
8 = 0 (4.11)

Since the l.h.s. is a modular form of weight 8, it should be proportional to ξ2
4

(2.19)
= 2gξ8

and the same is true for all the terms in the sum:

ξ
(p)
8 =

1

2
Wp ξ2

4 (4.12)

Thus the requirement (4.11) simply states that

g∑

p=0

hpWp = 0 (4.13)

Coefficients Wp can be evaluated by different methods, but the simplest one is to go to

the high-codimension subset at the boundary of moduli space, when the curve degenerates

into a set of tori and period matrix T becomes diagonal T = diag(τ1, . . . , τg). Then

ξ4(T ) → ∏g
i=1 ξ4(τi) = ξ⊗g

4 and

ξ
(p)
8 (T ) −→

g∏

i=1

ξ
(p)
8 (τi)

(2.31)
=

(wp

2

)g
g∏

i=1

ξ2
4(τi) (4.14)

so that

Wp = 2
(wp

2

)g table 3
= 2g(p−1)+1 (4.15)

Of course, (4.13) is an important but non-restrictive constraint on the coefficients hp.

All the hp are determined if the same reduction to genus one is made for the individual

Ξ8[e]: On one side,

Ξ8[e](T ) →
g∏

i=1

Ξ8[ei](τi)
(4.3)
=

g∏

i=1

{
θ4
ei

Π4
∗(τi)

}
(4.16)
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g h0 h1 h2 h3 h4 h5 . . .

1 1 −1
2

2 2
3 −1

2
1
12

3 8
21 −1

3
1
12 − 1

168

4 64
315 − 4

21
1
18 − 1

168
1

5040

5 1024
9765 − 32

315
2
63 − 1

252
1

5040 − 1
312480

. . .

Table 8: The values (4.19) of coefficients hp in (4.10) for the first low genera g.

on another side

Ξ8[e](T )
(4.11)
=

g∑

p=0

hp ξ
(p)
8 [e] −→

g∑

p=0

hp

{
g∏

i=1

ξ
(p)
8 [ei](τi)

}

(2.30)
=

g∑

p=0

hp

{
g∏

i=1

(wp

2
θ8
ei

ξ4 + αp θ4
ei

Π4
∗

)
(τi)

}
(4.17)

Comparing the two expressions we obtain a set of g+1 linear equations for g+1 coefficients

hp:

g∑

p=0

hpw
k
p(2αp)

g−k = 2gδk,0 or

g∑

p=0

h̃p λk
p = 2gδk,0 (4.18)

with k = 0, . . . , g, h̃p = (2αp)
gh̃p and λp = wp/2αp, so that hp is the ratio of

Van-der-Monde determinants:

h̃p = 2g ∆p(λ)

∆(λ)
= 2g

g∏

i6=p

λi

λi − λp
and hp =

g∏

i6=p

wi

wiαp − wpαi
(4.19)

It is easy to check, that the vanishing relations (4.13) and thus (4.11) are true with these

values of hp.

In Grushevsky’s basis [35] the coefficients are much nicer, moreover, they are actually

independent of g. Indeed, substituting ξ
(p)
8 in the form (2.11) and hp from the table 8

into (4.10) we obtain table 9 and finally

dµ[e] = Ξ8[e]dµ, Ξ8[e] =
1

2g

g∑

p=0

(−)p∏p
i=1(2

i − 1)
G

(p)
8 [e] (4.20)

(the coefficient in the term with p = 0 is unity, by the usual rule
∏0

1 = 1, like 0! = 1).

Note that in [35] the normalization of G
(p)
8 was chosen differently, therefore the coefficients

in (4.20) are also different.
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g = 1 Ξ8[e] = 1
2

(
G0

8[e] − G
(1)
8 [e]

)

g = 2 Ξ8[e] = 1
4

(
G0

8[e] − G
(1)
8 [e] + 1

3G
(2)
8 [e]

)

g = 3 Ξ8[e] = 1
8

(
G0

8[e] − G
(1)
8 [e] + 1

3G
(2)
8 [e] − 1

21G
(3)
8 [e]

)

g = 4 Ξ8[e] = 1
16

(
G0

8[e] − G
(1)
8 [e] + 1

3G
(2)
8 [e] − 1

21G
(3)
8 [e] + 1

315G
(4)
8 [e]

)

g = 5 Ξ8[e] = 1
32

(
G0

8[e] − G
(1)
8 [e] + 1

3G
(2)
8 [e] − 1

21G
(3)
8 [e] + 1

315G
(4)
8 [e] − 1

9765G
(5)
8 [e]

)

. . .

Table 9: The NSR-measure weight-8 form Ξ8[e] in Grushevsky’s basis.

4.3 More degeneration examples

In addition to (4.14) one can consider reductions to lower-codimension components of the

boundary, where, for example, the curve degenerates into two of genera g1 and g2 with

g1 + g2 = g. This is an important check, but the result actually follows from above much

simpler consideration.

For example, the genus-three

Ξ8
(4.10)
=

8

21
ξ
(0)
8 − 1

3
ξ
(1)
8 +

1

12
ξ
(2)
8 − 1

168
ξ
(3)
8 (4.21)

decomposes into genus-one and genus-two quantities

Ξ8 −→ Ξ8




τ 0 0

0 T11 T12

0 T12 T22


 =

8

21
ξ
(0)
8 (τ) ⊗ ξ

(0)
8

(
T11 T12

T12 T22

)
− 1

3
ξ
(1)
8 (τ) ⊗ ξ

(1)
8

(
T11 T12

T12 T22

)

+
1

12
ξ
(2)
8 (τ) ⊗ ξ

(2)
8

(
T11 T12

T12 T22

)
− 1

168
ξ
(3)
8 (τ) ⊗ ξ

(3)
8

(
T11 T12

T12 T22

)

(4.23)
=

(
ξ
(0)
8 − 1

2
ξ
(1)
8

)
(τ) ⊗

(
2

3
ξ
(0)
8 − 1

2
ξ
(1)
8 +

1

12
ξ
(2)
8

)(
T11 T12

T12 T22

)

(4.10)
= Ξ8(τ) ⊗ Ξ8

(
T11 T12

T12 T22

)
(4.22)

where we substituted the genus-one and genus-two relations:

ξ
(2)
8 (τ)

table 3
= −2ξ

(0)
8 (τ) + 3ξ

(1)
8 (τ),

ξ
(3)
8 (τ)

table 3
= −6ξ

(0)
8 (τ) + 7ξ

(1)
8 (τ) (4.23)

and

ξ
(3)
8

(
T11 T12

T12 T22

)
table 5

= 8ξ
(0)
8

(
T11 T12

T12 T22

)
− 14ξ

(1)
8

(
T11 T12

T12 T22

)
+ 7ξ

(2)
8

(
T11 T12

T12 T22

)
(4.24)

We omit characteristics labels in this section to simplify the formulas.
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ξ(0) ⊗ ξ(0) H0 + 82H3 + 562H4 = h2
0

64
315 − 82

168 + 562

5040 = 4
9

ξ(1) ⊗ ξ(1) H1 + 142H3 + 902H4 = h2
1 − 4

21 − 142

168 + 902

5040 = 1
4

ξ(2) ⊗ ξ(2) H2 + 72H3 + 352H4 = h2
2

1
18 − 72

168 + 352

5040 = 1
144

ξ(0) ⊗ ξ(1) − 8 · 14H3 − 56 · 90H4 = h0h1
112
168 − 56·90

5040 = −1
3

ξ(0) ⊗ ξ(2) 8 · 7H3 + 56 · 35H4 = h0h2 − 56
168 + 56·35

5040 = 1
18

ξ(1) ⊗ ξ(2) − 7 · 14H3 − 90 · 35H4 = h1h2
98
168 − 90·35

5040 = − 1
24

Table 10: Coefficients in front of the different structures in eq. (4.26).

Similarly, to check the decomposition with g = g1 + g2,

Ξ8 =

g∑

p=0

hpξ
(p)
8 −→

g∑

p=0

hpξ
(p)
8 ⊗ ξ

(p)
8 =




g1∑

p=0

hpξ
(p)
8


⊗




g2∑

p=0

hpξ
(p)
8


 = Ξ8 ⊗ Ξ8 (4.25)

one needs to know the analogues of (2.30) and (2.37) to substitute into the underlined

expression. After that the next equality is just an algebraic identity for the coefficients hp

in the table 8. Remarkably, generalizations of (2.30) and (2.37) can be found for all genera

by pure algebraic means: analyzing restrictions to hyperelliptic loci. Despite these loci have

high codimension g − 2, all the coefficients are unambiguously fixed in these restrictions.

Eqs. (2.30) and (2.37) themselves are actually enough to validate decompositions g =

m · 1 + n · 2 with various m and n.

To show just one more example, the decomposition 4 → 2 + 2 implies that

H0ξ
(0) ⊗ ξ(0) + H1ξ

(1) ⊗ ξ(1) + H2ξ
(2) ⊗ ξ(2) + H3ξ

(3) ⊗ ξ(3) + H4ξ
(4) ⊗ ξ(4) =

=
(
h0ξ

(0) + h1ξ
(1) + h2ξ

(2)
)
⊗
(
h0ξ

(0) + h1ξ
(1) + h2ξ

(2)
)

(4.26)

where Hp correspond to genus 4 (the forth line in table 8) while hp — to genus 2 (the

second line in table 8), — and genus-two modular forms ξ
(p)
8 [e] are related by (2.37):

ξ(3) = 8ξ(0) − 14ξ(1) + 7ξ(2),

ξ(4) = 56ξ(0) − 90ξ(1) + 35ξ(2) (4.27)

Collecting the coefficients at different independent products of forms in (4.26), we obtain

table 10. Equalities in the last column obtained by substitution of the coefficients from

the table 8 are indeed true.

5. Conclusion

To conclude, we reviewed spectacular new development in perturbative superstring theory,

caused by the ground-breaking papers [17]–[25] of Eric D’Hoker and Duong Phong and

their direct continuation in [31]–[37]. The main reason why these formulas have not been

discovered in the first attack on NSR measures in 1980’s seems related to three prejudices.
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First, starting from [41], the vanishing of cosmological constant was attributed to Rie-

mann identities, while the simple relation (2.28) at genus one allowed two kinds of general-

izations: to (2.13) and to (2.19). It turned out that the second choice is more appropriate.

Second, NSR measure dµe was believed to be proportional to θ4
e , so that expressions

for to 1,2,3,4-point functions would not contain θe in denominators. Remarkably, this prej-

udice was still alive in [17] and was finally broken only in [34], though it was actually based

on the misleading overestimate of the role of the Riemann identities (since they had a gen-

eralization (2.14), the vanishing of 1,2,3-point functions would automatically come together

with that of the 0-function — if Riemann identities were the right thing to rely upon).

Third, naive integration over odd supermoduli was associated with a correlator of the

superghost β, γ-fields [53], which produced a non-trivial theta-function in denominator

and summation over spin structures (theta-characteristics) looked hopeless. An artistic

choice of odd moduli was then required in order to eliminate this theta-function and

perform the summation. Exact treatment of odd moduli in [17]–[25] confirmed that the

measure dµe is simple and has nothing non-trivial in denominator (at least for genus two)

and this opened the way for a new stage of guess-work, based on the search of the modular

forms with given properties.

Today all these problems seem to be largely resolved, the outcome — eqs. (4.10)

and (4.20) — is nearly obvious (once you know it) and it deserves to be widely known. Our

main goal in this text was to give as simple presentation of the subject as possible, avoid-

ing unnecessary details about supermoduli integration and modular-forms theory, relying

instead only on widespread knowledge of elementary string theory. To avoid overloading

the text we did not include consideration of non-renormalization theorems for 1,2,3-point

functions [38], in particular, the resolution of the θ4
e ”paradox”, and the most interesting

expressions for 4-point functions (found and proved in above-cited references). Already

at the level of 4-point functions the NSR string with GSO projection can be compared to

Green-Schwarz superstring [74]–[76], where equally impressive progress is also achieved in

recent years due to the works of Nathan Berkovits [77] — and this is a separate issue of

great importance to be addressed elsewhere.
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